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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
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ANALYSIS OF SOLAR-RADIATION SHIELDS FOR TEMPERATURE

CONTROL OF SPACE VEHICLES SUBJECTED TO

LARGE CHANGES IN SOLAR ENERGY

By George J. Nothwang, John C. Arvesen,
and Frank M. Kamaker

SUMMARY

An analysis has been made of a passive temperature control system

for a space vehicle which is subjected to variable solar energy. This

system effectively isolates the capsule from the incident solar energy

by the use of solar-radiation shields. The desired temperature level of

the capsule could then be maintained by a constant internal heat load.

The analysis was developed on the basis of diffusely reflecting isothermal

surfaces and permits evaluation of the temperatures of various shield-

capsule configurations. Several shield-capsule configurations were

studied and parameters were established which indicate the important

criteria for achieving the desired temperature control.

The analysis was applied to two specific vehicle configurations

suitable for solar probe applications, and shield and capsule temperatures

were calculated as the probe traveled from 1.O to 0.1 astronomical unit

from the sun. Typical results were obtained with a solar absorptance and

thermal emittance and absorptance of 0.20 for all surfaces. For the coni-

cal capsule with a single shield, it was found that the temperature of the

shield increased from 590 ° to 1900 ° R while the corresponding temperature

of the conical capsule increased from 500 ° to 526 ° R. For a conical cap-

sule with a double shield, the temperature of the first shield again

increased from 590 ° to 1900 ° R but the corresponding temperature of the

capsule rose only from 500 ° to 502 ° R. Thus, it is demonstrated that

the temperature of a capsule can be controlled effectively with shield

and capsule materials which have no unusually high or low absorptance

and emlttance characteristics.

The effects of specularly reflecting (instead of diffusely reflecting)

surfaces and the effects of shield thermal conductivity on capsule temper-

ature were also studied. Results from these studies were applied to the

single-shield, conical-capsule configuration and it was found that these

effects did not significantly alter the magnitude of temperature control

achieved.
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INTRODUCTION

All knownmaterials_ even those considered to be good reflectors_
will absorb a fraction of incident radiation. Thus, any space vehicle
subjected to solar radiation must absorb a certain amount of energy
which (if the vehicle is in thermal equilibrium) must in turn be radiated
from the vehicle. The amount of energy radiated, according to the
Stefan-Boltzmann law, is proportional to the fourth power of the tempera-
ture of the surface. Thus, if the amount of incident solar energy varies
over wide ranges, the temperature of the vehicle may also vary over an
undesirably large range.

This problem was exemplified in a report by Dugan (ref. i) for a
solar probe which traveled to within 0.i astronomical unit of the sun.
For the configuration studied, probe temperature changes on the order of
hundreds of degrees Fahrenheit were calculated. However, the allowable
temperature variations of such a vehicle are restricted by the tempera-
ture limits of the instrumentation. It is indicated in reference 2 that
instruments mayhave to be maintained in the temperature range of 60°
to 78° F (15° to 25° C) at all times. Thus, thermal control of such a
vehicle is mandatory.

In general, two types of temperature control systems are used:
active and passive (see ref. 2). Active systems generally involve
mechanical devices, such as shutters, rotating fan blades, etc., to expose
different surface materials with different surface properties to the
incident radiation (see ref. 3). These systems maybe complex and heavy
and their reliability is always less than perfect. Therefore, a passive
temperature control system is usually preferred if the desired temperature
limits can be maintained.

Onetype of passive system that appears to have possible application
is the use of solar radiation shields to completely isolate the instru-
ment capsule from direct solar radiation. In this case, the ambient
temperature of the capsule is a function of only the internal power of
the capsule, the capsule surface area, and the thermal emittance. The
use of such shields was mentioned briefly by Cornog (ref. 4), and Nichols
(ref. 5) studied the use of disc-type solar shields in an active control
system.

It is the purpose of the present study to evaluate the effectiveness
of solar radiation shields for passive temperature control of vehicles
subjected to large changes in solar energy. First, an analysis is made
of the radiant heat-transfer processes which influence the temperatures
of the shields and the shielded capsule. Then_ several simple axially
symmetric shield-capsule configurations are studied and parameters are
established which indicate the important criteria for achieving the
desired temperature control. For illustration, the results are applied
to two solar probes that travel to within O.1 astronomical unit of the
SU_q.
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NOTATION

A

Ax

BI, B2_..., B 5

b

CI, C2,..., C8

D(?)

E

F

H(_)

I(Z)

lav

I(?)

i, j, k

K

k

L

surface area, sq ft

projected surface area normal to direct solar

radiation, sq ft

area of capsule "seen" by the shield, sq ft

constants defined by equations (32) through (36)

shield thickness, ft

constants defined by equations (59) through (66)

intensity distribution function

solar flux at earth's distance from the sun,

(129 watts/sq ft)

radiative heat-transfer configurat ion factor

outgoing radiant flux from inner surface of the cone

(appendix C), watts/sq ft

incoming radiant flux to inner surface of the cone

(appendix C), watts/sq ft

average intensity over all angles (eq. (5)),

watts/sq ft steradian

directional intensity at viewing angle q0,

watts/sq ft steradian

unit vectors along x, y, and z axes, respectively

kernel of integral equation (eq. (CIO))

thermal conductivity_ watts/°R ft

slant length of cone, ft

distance along cone from apex to surface area dA, ft



•

m

n

Q

Qi

R

S

T

TQi

V

X, Y, Z

x

x, y, z

CL

C_s

(_Sl)F_,FF

5

E

e

p

exponent(eq.(BI))

number of reflections

unit vector normal to dA_ ft

radiant energy, watts

internal power of capsule, watts

radius of base of cone and radius of sphere, ft

distance from the sun, astronomical units

distance between dA a and dab, ft

temperature_ OR

capsule temperature due to internal power (eq. (44)), OR

volume, cuft

dimensionless integration parameters

distance between shield and capsule, ft

axes in Cartesian coordinate system

thermal absorptanee

solar absorptance

effective solar absorptance of first shield

semiapex angle of a cone_ deg

separation between apexes of two cones, between center

of sphere and apex of cone (figs. 14 and 15), ft

total hemispherical emittance

conical shield orientation parameter (appendix C)

angle in the y-z plane as seen in figure 14, deg

Fredholm integration parameter (eqs. (C13) and (C17))

distance from apex of cone to elemental surface area or

distance from center of sphere to elemental surface

area, ft



_0

a

b

c

INITIAL

L

max, min

n

S

U

o

l

2

3

4

ist

and

Stefan-Boltzmann constant (502><10 -12 watts/ft a °R4)

energy transfer factor (eqs. (51) and (68))

angle between the normal to an elemental area and a

line connecting this elemental area with another, deg

angle from x axis to position vector _ as seen in

figure 15, deg

solid angle, steradians

Subscripts

surface a

surface b

capsule

radiation transfer with no reflections

lower limit of integration

limits for specular reflections

number of reflections

solar energy

upper limit of integration

earth's distance from the sun (i.e., _ = l)

front surface of first shield

back surface of first shield

front surface of second shield

back surface of second shield

first reflection

second reflection



Superscripts

n

energy emitted

vector notation

ANALYSIS

General Considerations

As the analysis of the radiative heat transfer associated with a

capsule shielded from solar radiation is developed, a number of "ground

rules" and assumptions are introduced. For clarity, these are collected

in the following list:

i. The vehicle, which is composed of a capsule and one or more

solar radiation shields, is oriented in the spatial environment so that

solar radiation is incident on only the first shield and does not strike

any other shield or the capsule.

2. The incident solar energy is composed of parallel rays and the

flux varies as the inverse square of the distance from the sun.

3. Solar energy is the only source of incident radiation. (Other

amounts of energy either reflected or emitted from planets are considered

negligible.)

4. The capsule has an internal heat load, Qi' which is constant.

5. The capsule has no concavity toward the shield.

6. The vehicle can be considered to be in thermal equilibrium at

all times.

7. No heat is conducted from shield to shield or from shield to

capsule or vice versa.

8. All surfaces emit energy diffusely, that is, the intensity

distribution has a Lambertian or cosine variation.

9. All surfaces absorb a fraction of the incident energy and this

fraction is independent of the angle of incidence.

i0. The energy reflected from all surfaces is reflected diffusely3

that is 3 the reflected intensity distribution has a cosine variation.

ii. The surfaces of each shield or capsule are isothermal 2 that

is 2 the thermal conductance is infinite.

A
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Radiant Heat-Transfer Processes

General equations of radiative heat transfer from one surface

element to another.- When two surface elements_ dA a and dab3 located

upon surfaces a and b_ are situated so that they can "see" one another

(see sketch) each will radiate energy to the other and a net exchange

of energy from the hotter to the cooler area will result. The net

amount of energy exchanged will be determined by the geometry, surface

properties, and the absolute temperatures of the areas.

S

dAo

Surface o

Surface b

It can be seen from the sketch that the energy emitted from surface

dA a through the solid angle subtending dAb is

d2Q*dAa_dA b = l(q_a)d_ a cos q_a dAa (I)



where l(q%) is the directional intensity of radiation from surface dAa
at angle q0a from the normal3 and d_a is the solid angle to dAb
from dAa. This angle maybe expressed as

cos % _'b (2)
d_ a = 82

Upon the substitution of equation (2) 3 equation (i) becomes

cos _a cos % dAa aAb

S _

(3)

l(fl0a)may be expressed in terms of the average intensity 3 lay 3 over

surface dAa by the relationship (ref. 6)

i(%)
D(_a) -- lav

(4)

The average intensity over dA a is defined as

Ca_Ta_
lay _ (9)

Substitution of equations (4) and (5) into equation (3) will yield an

expression for the energy incident upon dAb due to energy emitted

from dA a at temperature Ta:

cos % cos % dad _4
d2Q*d_Aa_dAb = CadTa_D(ga) _S 2

(6)

It should be pointed out that this equation yields only the amount of

emitted energy from dAa that is initially incident on dAb and it

does not consider any reflected energy between the two areas.

At this point the configuration factor 3 dFdAa_dAb 3 is introduced

and is defined as the fraction of the energy emitted by dAa that is

incident upon dAb (see ref. 6). Since the energy emitted by dA a

is _a_Ta4dAa and the amount incident upon dAb is given by equa-

tion (6)3 the configuration factor from dA a to dAb maybe written as

z cos % cos % _ _%
d.FdAa.dA b - cI_Aa D(q°a) _S 2

(7)
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and equation (6) may then be rewritten as

(8)

Radiant heat transfer between two finite surfaces.- It is possible

to compute an average configuration factor for any two finite surfaces

and any given intensity distributionj D(_a) J by integration of equa-

tion (7). For the present analysisj all surfaces will be assumed to

emit energy with a Lambertian or cosine variation (i.e.j D(_) = i) and

the resulting equation is

Fa'b Aa a _$2
(9)

Integration of equation (9) can be accomplished with the use of high-

speed electronic computers, and the techniques for several geometric

configurations are given in appendix A.

If it is assumed that the surfaces are isothermal (i.e._ the material

has infinite thermal conductivity) 3 the energy emitted by surface a that

is initially incident on surface b can be expressed as (from eq. (8))

(Q*a-b )INITIAL = _a_Ta_a-b Aa (lo)

If the absorptance of surface b is assumed to be independent of the angle

of incident radiation and is a constant 3 _b3 the amount of energy emitted

by surface a that is initially absorbed by surface b is

(Qa-b )INITIAL = _b _aaTa_Fa-b Aa (ii)

Since no surface is a perfect absorber (i.e., _ < i)_ the reflected

energy must be included in the analysis. Following the method proposed

by Christianson (see ref. 7) the reflected energy is considered as

follows: Equation (ll) gives the initial amount of energy absorbed by

surface b. The fraction (1 -_b) of the amount given in equation (i0)

is reflected. Assuming this energy is reflected in the same manner as

energy is emitted (namely, with a Lambertian or cosine distribution) then

the amount

(Qa-b -a )Ist = Fb -a (i - _b )_a_Ta_Fa-bAa (12 )
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is incident on surface a. The fraction, _a, of this energy is absorbed
by surface a and again (i - _a) times this energy is reflected. Thus,
a second amountof energy will be absorbed by surface b and it will be

(Q_-b-a-b )and = at eaCTa4AaFaa-bFb-a(i - at )( i - _a) (13)

Again some energy is reflected from surface b and it can be seen that

for an infinite number of reflections the total energy absorbed by sur-
face b is

OO

- _n_n _nQa-b = at%_Ta4Fa-bAa (I - _a)n(l at/ _a_b_b_a

n=o

(l_)

Since all terms in the summation have values less than I, the binomial

theorem can be used to reduce equation (14) to the closed form

at Cao_Ta_Fa-bAa
= (15)

Qa-b i - (i - C_a)(l - at)Fa_bFb_ a

Equation (15) is an expression for only the heat transfer from surface a

to surface b. In order to perform a heat balance, a similar equation for

heat transfer from surface b to surface a would have to be written.

Ener_ emitted by a single concave surface.- If any surface, called

surface a, can "see itself" (such as the concave surface of a right cir-

cular cone), the surface will have an average configuration factor to

itself, Fa_ a (see appendix A). Thus, the amount of energy emitted by

surface a that is initially incident on itself is

(Qa-a )INITIAL = [aaTa4Fa-aAa (16 )

With the use of an analysis similar to that presented in the previous

section, the total energy incident on surface a, considering an infinite

number of reflections, can be shown to be

_aaTa_ a-aAa
Qa-a = (17)

i - (i - _a)Fa-a

and, therefore, the energy radiated from the entire concave surface is

(i - F a_a )%cTa4Aa
%* -- (18)

i - (i - _a)Fa-a

A
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Solar energy absorbed by a single concave surface.- The amount of

solar radiation incident upon a concave surface is (E/_a)A x. Again,

there will be reflections within the concavity which can be summed in

the same manner as in the two previous sections and the total energy

absorbed by surface a can be shown to be

_sa(E/_a)Ax

Qsa = i - (i - _sa)Fa-a (19)

where _sa is the solar absorptance of surface a. It can be seen from

the above equation that as Fa. a approaches I (the interior surface of

a long slender cone approximates this case), surface a absorbs energy

more nearly like a perfect absorber (m s = i), regardless of the value of

solar absorptance.

Applications to Shield-Capsule Configurations

Single shield configuration.- It is now possible to apply the derived

equations of radiant heat transfer to the case of a single solar radiation

shield between a capsule and the incident solar energy.

Let subscripts i and 2 refer to the shield's sunlit (front) and

shaded (back) surfaces, respectively, and let the subscript c refer

to the surface of the capsule. From equation (19) the total solar energy

absorbed by surface I is

: i - (l - (20)

The energy emitted by surface i (from eq. (18)) is then

QI* = (i - F_.z)AzelqTz 4

1 - (i - _l)Fl-1
(21)

The heat balance between the shield and capsule is not easily

analyzed by the methods presented here if either the shield or capsule

has a concavity. The present study is therefore simplified by assuming

no concavity on the capsule. In addition, to simplify the analysis of

the case where the shield has a concavity toward the capsule (F2-2 > 0),

the analysis as presented also neglects the relatively small amount of

energy that is reflected from the capsule back to the shield, is then

reflected from one part of the shield to another, and is then eventually

either absorbed in the shield or capsule or dissipated to space.
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The energy emitted from the back surface of the shield can be
determined in a manner similar to that required for equation (21).

Q2* = (I - Fa-2)A2c2dT24

i - (1 -_2)F2_2
(22)

The energy emitted from the shield, reflected from the capsule, and

reabsorbed by the shield will consist of two components. The first will

be the energy that is emitted directly to the capsule_ is reflected from

the capsule, and is reflected back and forth between the shield and

capsule.

_2-cFc-2( z - % )_2_T2 _
Q2-c-2 : (23 )

1 - (i - _)(1 - % )F_-oFc-_

The second component will be the energy that is emitted from the shield

directly to itself, is reflected within itself any number of times, and

is then reflected an infinite number of times between shield and capsule.

_22-2F2-cFc-2(l - % )(l - % )_2A2_T24
% -2-c-2 : (24 )

[1 - (l - _)(1 - %)F_.oFc__][I- (l - _)F2-_]

The capsule has its own temperature, Tc, and will radiate energy to the
shield. The amount absorbed is

v 4 T

_Zc-_o Cc_c _( l - _)F_._Fc__ _c_c4
Qc -a = +

z - (l - _)(1 - %)F__cFc__ 1 - (i - _a)F2-2

+
_F2.]2_cF c_2(1- %)2(1 - %)A_%_Tc _

[1 - (1 - _)(1 - %)F2-_Fc-_][1- (1 - _2)F2-2]
(25)

where A_ is the area of the capsule "seen" by the shield. By the

reciprocity theorem (ref. 7)

Fc-_A_= F_-cA2 (26)
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Equation (25) may now be rewritten as

Qc -2 --

_2F2-cAa ecoTc 4

i - (l -_2)(i - _c)F2-cFc-2

_aFs_sFa_c(l - _2)A2ecaTc _
+

i - (1 - _2)F2-2

2
_aF2-2Fa-cFc-2(l - _2)2(i - _c)Asec_Tc 4

+ (27)

A heat balance may now be made upon the shield. Since there is no

internally generated heat:

HEAT ABSORBED = HEAT EMITTED

In most practical configurations_ the shield will be thin so that A I = A2

and T_ = T2. The heat balance may now be evaluated from equations (20),

(21), (22), (23), (24), and (27):

_sI(E/92)Ax + _aF2-cFc-m(l - _c)¢2A20T24 + _2F2-cA2ecoTc 4 + _2F2-aF2-c(l - _a)A2ecoTc _
i - (i - _2)F2-_

i - (l - =sl)F1-1 i - (l - _a)(l - _c)F2-cFc-2

2 _c )A2ec°Tc 4_a_Fa.2F2_cFc_a( 1 - _2)( 1 - _c )e2A2°Ta 4 + c_2F2-2F2-cFc-2( 1 - am)m( 1 -

[i - (i - _)(i - %)F2__Fc__][i- (i - _)F___]

(1 - FI-I)AaeloT24

i - (i - cL__)FI-I

(! - F2-2)A2%oT2 *
+

i - (i - _)F_-_

(28)

Similarly, a heat balance on the capsule may be made and evaluated

to give

KEAT ABSORBED + INTERNAL HEAT = I{EAT EMITTED

or

c_cFa.cAaeaqT2 _ + C_cF__c(l - o_a)AaecoTc 4

[1 - (l - _)___][1 - (1 - _a)(1- _c)_-eFc-_]
+ Qi = ecAcoTc 4

(297

Equations (28) and (29) may be solved simultaneously for capsule tempera-

ture and shield temperature as a function of surface properties_ geometric

configuration, internal heat, and distance from the sun:



L4

+ Qi]
B2B5 - BsB4 J

= _+
T2 L' BaB---7i BsB4 j

(3o)

(3_)

where

B 2 =

B l =

as IAxE

1 - (I - C_sl)FI- l

(i - Fl_1)A2elc

i - (i - _I)FI_I

(i - Fa-a)Aaeaq
+

i - (! -_2)F2.2

(32)

A

5
3

5

c_2Fe-aFa-cFc-2( 1 - c_2) (1 - q'c)¢aAaa

[i - (i - a2)(l - ac)F2-cFc-2][l - (i - c_2)F2_2]

_2F2_cFc_e(1 - _c)£2A2q

1 - (i - a2)(l - c_c)Fa-cFc-2

(33)

B S =

c_2F2 -cA2 6c (_
+

i - (i - a27(l - ac)F2-cFc-a

_aF2-2Fa-c (i - _a )Aa ecO

i - (I - c_2)Fa_2

+

2
c_aFa-aFa-cFc -a(l - c_a) a(i - ac )AaecO

[i - (i - aa)(l - ac)Fa-cFc-a][l - (i - ae)F2-2]

(34)

B4 =

_cFa-cAae2G

[i - (i - _2)Fe-a][I - (i - _a)(l - _c)Fa-cFc-2]
(35)

B 5 = 6cAc(_ -

2
acF2-c(l - c_a)AaecO

[i - (I - a m)Fa.a][l - (i - aa)(l - ac)Fa-cFc-a]

(367

The total energy absorbed by the capsule may now be found by the

substitution of equation (30) for the capsule temperature into equa-

tion (29) for the heat balance on the capsule:

TOTAL HEAT ABSORBED = Qc = ecAco r(BiB4/_a-) +BmQi_
[ BaB5 - BsB4 j - Qi

(37)



This absorbed energy consists of two components, (a) that due to solar
irradiation and (b) that due to reflection and reradiation by the shield
of the internal energy, Qi" These two componentsmaybe evaluated by
eliminating first, the effect of internal energy (i.e., Qi = O) and
second, the effect of solar energy (i.e., 9 = _). The energy absorbed
as a result of solar irradiation is found to be

or for 9 = 1.0

L B:LB4

(38)

(39)

The absorbed energy due to reflection and reradiation from the shield of

emitted internal energy is

(4o)L BmQi
Qci = ecAca \BaB _ i B3B4/ - Qi

or

Qci

Qi

(4l)

From equations (30), (38), and (40) the temperature of the capsule

can be written

i ,\l/4 + )l! 4 (42)

or

Tc kecAca/ LX Qi / + _ + 1 (43)

Let

( Qi_ 4
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which is the temperature the capsule would attain with no incident solar

energy and no shield attached to the capsule. Therefore, equation (43)
can be written in dimensionless form as

--= + Q-_-+ 1TQi
(45)

If one wishes to compute a fractional capsule temperature change from the

capsule temperature at the earth's distance from the sun (_ = 1.0), the

equation becomes

Tc -_co = +_+l #Qcso + + (46)

For a specific value of _ the capsule temperature change is

dependent on the magnitude of Qcso/Qi. If equation (39) is divided

by Qi, the resulting equation is

Qcs.___o= eCAC_ f BIB4
Qi Qi \B2B 5 - BsB

(47)

It becomes convenient to define an effective solar absorptance of the

solar shield as

% I (48 )
(aSl)EFF = 1 - (1 - C_sl)F1.l

which, when substituted into equation (32), yields

B l = (_Sl)EFFAX E (49)

Substitution of equation (49) in (47) yields

Qcso = B4 (50)

A

5
3
5

The product of the first two quantities on the right side of the equation

is the ratio of the solar energy absorbed by the shield at _ = 1.O to

the internal power of the capsule. Therefore, the last term must be the

ratio of the energy absorbed by the capsule (due only to solar irradiatio_

to the solar energy absorbed by the shield, and is a function of only the

shield-capsule configuration and the thermal emittances and absorptances

of each of the surfaces. (The same ratio can be obtained from equa-

tions (20), (48), (32), and (38).) This ratio is a measure of the ability
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of a shield-capsule configuration to transfer absorbed solar energy from

the shield to the capsule and is termed the energy transfer factor, m.

Thus,

2Bs '-BsB
(51)

and with this substitution, equation (_0) becomes

Qcso
Q-_'- = (C_s I)EFF \ Qi/ m

The above equation shows the relationship of parameters that will, in

turn, affect the temperature change of a capsule (eq. (46)) subjected to

various amounts of solar energy.

Double-shield configuration.- The energy incident upon the capsule

may be further decreased by the use of multiple shields. Because of the

increased complexity of the resulting equations, only the effects of

placing a flat shield (disc) between the primary shield and the capsule

will be studied. The methods used to determine capsule temperature are

similar to those used in the preceding section for the single shield.

Again for thin shields Al = A2, Tl = Ta, As = A4, and Ts = T4. A heat

balance on the first shield yields

C_s1(E/_ 2 )Ax c_2F2-2Fs-2( 1 - c_2 ) esA40T44
+

1 - (1 - _sl)FI_I 1 - (i - c_2)F2-2

_2Fs-2 CsA4oT44 + cL2Fn-sFs-2( i - cLs ) 62A2_T24
+

CLeF2-2Fe-sFs-2( 1 - c_2 ) ( 1 - o_s) eeA2sTa 4 + c_eF 2-2F2-sF_-2( l - cL2 )a( l - a s) 6sA4_T4 4
+

[i - (i - _a)(l - c_s)Fe-sFs-a][l - (i - _e)F2-2]

(i - FI_l)A2610T24
=

i - (! - _I)FI-_

( i - Fa-2)A2620T24
+

Similarly, the heat balance on the intermediate shield will give

c_sFe_sAae2_Ta 4 + c_sFa_s(1 - c_a)Fs_aesA_OT_ _

I1 - (1 - _)r___][1 - (1 - _)(1 - _)r_-_r_-_]

+

c_4F_-c ecA_Tc & + _4Fc-4(i - C_c)F_-cA_e4cT4 _

i - (1 - c_4)(1 - C_c)F_-cFc-4 (54)
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Finally, the heat balance on the capsule will yield

acF__cA 4e4cT44 + acF__c(l - a4)A4ecGTc 4

1 - (1 - a4)(1 - % )F4._Fc-_
+ Qi = ecAcOTc 4 (55)

Upon solving the three heat balance equations simultaneously for the

temperatures of the capsule and the shields, the following equations

are obtained:

F(o_c_c,/_)+<c_c_-_c_IQi.l__
Tc =L _ _c7c7 -c_c_c_j

(56)

_ Lc_5Y_ _ 0-_7c7- c_c_c_j
(57)

_. (CICsCs - CIC5C7)/_a] + CaCsQi._ l/4 (_8)

where the constants Cl through C8 have the values

C 2 =

e I =

as IAx E

i - (i - asl)Fl-1

amFs-mcsA4o

1 - (1 - am)(1- _3)F2-]s-m

amFm-mFs-2( 1 - a2) csA4o
+

i - (I - a2)Fa-m

2
aaFm.aFm_sFs_2( 1 - am)a(1 - a s) esA4_

+

[1 - (1 - am)(1- a3)F2-]s-m][1- (1 - a2)F_-m]

(59)

(6o)

v

C s =

(i - Fl_l)Aeelo

1 - (1 - al)Fl- 1

(i - Fa-2)A2emc
+

1 - (i - am)Fm-m

amF m.sFs_m( i - as) £2A2o

i - (1 - am)(1-as)Fm-_s-_

c_aFa-mFa-sFs-m( 1 - a e )(1 - as) ¢aAa_

[1 - (1 - =_)(1- as)Fm-3F3-m][1- (1 - am)Fro-m]
(61)

C4 =

c_sFa-sAm eau

[1 - (1 - am)F2._][1- (1 - am)(1- as)F_.3F3-m]
(62)

a4F4-c _cA4_
(63)

C 5 =
1 - (i - _4)(i - ac)F4-cFc-4
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c6 = A4(_3 + c4)_ -
_sF2-3(1 - _2)F3-2e3A4_

[1 - (1 - =_)F_._][1 - (1 - _)(1 - _3)F_-3F3-2]

_Fc-4(1 - _c)F4-cA4c4o

1 - ( 1 - _4)( 1 - _c )F4-cFc-4
(64)

C_cF_-cA4 e4_ (65 )
C7 = i - (1 - _4)(i - _c)F4-cFc-4

C_cF2-c( 1 - cc_.)A4ecCr
C8 = ccAcc - (66)

1 - (1 - _4)( 1 - _c)F__cFo._

The temperature change of a double-shielded capsule is again given

in terms of energies by equation (46) where

Qci _ CsCe - C2C4 C2C4C8"_ " 1 (67)

and Qcso/Qi is given by equation (52). The energy transfer factor

is now

<C C4C7 8_= eeAc_ sCeCs - CsCsC7 - C2C4C
(68)

and (_Sl)EF F is given by equation (48).

RESULTS AND DISCUSSION

The equations presented in the Analysis section of this report

provide the tools required for evaluating solar-shield-type passive

temperature control systems. First, the effects of shield-capsule con-

figuration, solar absorptance, and thermal emittance and absorptance on

system performance will be studied. Second, the analysis will be applied

to the temperature control problem of a solar probe to demonstrate the

effectiveness of the solar-shield-type temperature control system. Third,

the limitations of the analysis will be discussed.
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Capsule Temperature Change

The purpose of any spacecraft temperature control system is to
minimize the changes in capsule temperature while the vehicle is traveling
in a prescribed trajectory. Equation (46) expresses the capsule tempera-
ture change (the reference temperature, Tco, is the capsule temperature
whenthe vehicle is i astronomical unit from the sun) in terms of the
parameters, Qcso/Qi, Qci/Qi, and _. For the more practical configurations
studied, the parameter Qci/Qi (eq. (41)), is very much less than i. (The
magnitude of Qci/Qi will be shownlater for various configurations.)
Therefore, equation (46) can be reduced to

TQi

4

- _Qcso + (69)
\ Q±

Results from the above equation are shown in figure i to indicate

capsule temperature change as a function of the parameter, Qcso/Qi, for

vehicles which travel from the earth to various distances from the sun.

It can be seen that for a prescribed temperature change of the capsule,

the value of the parameter Qcso/Qi must become smaller if the mission

requires that the vehicle travel closer to the sun. Thus, the parameter
Qcso/Qi is a measure of the temperature-control-system performance.

Equation (52) shows that Qcso/Qi is simply the product of the

parameters (_Sl)EFF , (AxE/Qi) , and T. The quantity, AxE/Qi, is the ratio

of the amount of solar energy incident on a vehicle at the earth's dis-

tance from the sun to the internal power of the capsule. Generally, the
frontal area of the vehicle is chosen as a design parameter and the

internal power is dictated by the payload instrumentation. Thus, one

will not generally have a wide choice of the value of AxE/Q i for any

specific vehicle. Minimization of Qcso/Qi will then require minimiza-

tion of the product of (_Sl)EFF and T. The effect of shield-capsule

geometry on these parameters is discussed in the next two sections.

Effective solar absorptance.- The effective solar absorptance is

given by equation (48). For a shield which has a concavity toward the

sun, there will be a configuration factor to itself, Fl_ 1 (see appen-

dix A), and the effective solar absorptance will be greater than the

solar absorptance of the material by itself. In the case of a conical

shield with the open end (base of the cone) toward the sun, the configura-
tion factor to itself becomes

A__x
FI_ I = i - Al = i - sin _ (70)

A

5
3

5
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where _ is the semiapex angle of the cone_ and the effective solar

absorptance from equation (48) becomes

i - (1 - sin

Results from this equation are presented in figure 2. It can be seen

that for small cone angles the effective solar absorptance approaches i.

This exemplifies the ability of a long slender cone to absorb energy more

nearly like a black body even though the absorptance of the material is

relatively low. Thus, it is seen that the effective solar absorptance

can be several times the solar absorptance of the material.

Energy transfer factor.- The energy transfer factor_ T_ for a single-

shield configuration is expressed in equation (51). It is the fraction

of the solar energy absorbed by the first shield that is absorbed by the

capsule. As indicated by this equation_ the energy transfer factor is

dependent only on the shield-capsule configuration and on the thermal

emittance and absorptance of the shields and capsule. The effects of

these parameters for typical configurations are shown in figures 3

through 5.

Energy transfer factors are shown in figure 3 for a conical-shield,

conical-capsule configuration with various conical-shield semiapex angles

and several values of thermal emittance and absorptance. The configura-

tion is shown on the top of the figure and the radius of the base of the

conical shield is chosen to be equal to the radius of the base of the

conical capsule for all shield semiapex angles. In addition_ these results

are for the case where the thermal emittance and absorptance for all

surfaces of the shield and capsule were identical (i.e., _l = cl = _2 =

_2 = SO = _C)"

It can be seen from figure 3 that for this particular configuration

and the range of _ and c presented_ the energy transfer factor, T,

varies by four orders of magnitude. The highest values of T occur

at _ = 169 ° where the shield completely encloses the front of the capsule.

The lowest values of T occur at the lowest values of _, _ and c.

In order to show the effects of capsule configuration_ T was also

computed for a conical-shield_ spherical-capsule configuration and the

results are compared with the conical-capsule configuration in figume 4.

At particular values of _ and _ = _, T is at least twice as great for

the spherical capsule as it is for the conical capsule. This results

from the higher configuration factors between the shield and spherical

capsule.

The configurations studied so far have had a fixed distance between

the apex of the conical shield and the capsule. Effects of variation of

this distance on T are shown in figure 5 for two conical-shield angles
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and two values of _ and ¢. It can be seen that T decreases with an
increase in distance between shield and capsule. Also note that the
change in _ due to increasing x/R from 0 to 1.0 is of the sameorder
of magnitude as that due to changing _ from 90° to 45°.

Multiple-shield configurations can be expected to yield smaller
values of T than the single-shield types. Thus, the analysis was
extended to the double-shield capsule configuration where the first
shield can be of arbitrary shapeand the second shield is a disc. Energy
transfer factor, 72 is expressed by equation (68) and results from this
equation for the configurations chosen are shownin figure 6. It can be
seen that for _ = 45° and _ = c = 1.0 or 0.1, the position of the disc
does not appreciably change T. Even with _ = 90° and _ = c = 1.0, the
position of the disc has little effect on T. However, for _ = 90°
and a = ¢ = 0.1, the position of the disc has a pronounced effect on T
because_as the two parallel discs approach each other, the reflected
energy suffers more reflections, and thus more absorption, between the
parallel discs and less energy is dissipated to space.

A comparison of figures 5 and 6 indicates that, for given values
of _, a, and e, the double-shield configuration has substantially smaller
values of T than does the single-shield configuration. The greatest
decrease occurs for the lower values of a and c. In general, the com-
bination of highly reflecting surfaces and multiple-shield arrangements
will yield the lowest values of T.

The foregoing results presented in figures 3 through 6 were taken
from a complete set of calculations madewith an IBM7090 computer for
single- and double-shield configurations and both conical and spherical
capsules. The input variables were conical shield angle, distance from
the shield to capsule, and thermal emittance and absorptance. These
calculations yielded configuration factors, T and Qci/Qi, which are
tabulated in tables I through IV. The configuration is shownat the top
of each table and, in these calculations, the thermal emittance and
absorptance of the shields were chosen to be the sameas those for the
capsule. Note that for most practical configurations, the ratio Qci/Qi
is very much less than 1.0 and, therefore, as mentioned before,
equation (69) can be used to calculate capsule temperature change.

A
5
3
5

Equilibrium Temperatures of a Solar Probe

It was indicated in the Introduction that one of the most severe

thermal control problems of space vehicles was that associated with a

solar probe which would travel from the earth to within 0.I astronomical

unit of the sun. Results from the foregoing analysis are applied to this

problem to demonstrate the use of solar radiation shields in a passive

temperature control system for a space vehicle subjected to variable solar

energy. The configurations chosen are only typical and have not been

optimized in any respect.
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Figure 7 shows the configurations that were studied. The probe is

assumed to be a vehicle with a total capsule volume of 4.0 cubic feet

and an internal heat load, Qi' of i00 watts. The conical capsule has a

length to diameter ratio of 2 and its total surface area (including the

base) is 15.61 square feet. The emittance of the capsule surface is

chosen so that the surface temperature is 500 ° R when no external energy

is absorbed by the capsule and no shield is attached, that is, TQ i
is 500 ° R. The resulting thermal emittance of the capsule, ec, is 0.20.

For simplicity in this analysis, thermal absorptance, _, and thermal

emittance, e, of the shields are chosen to be the same as ec. Two values

of solar absorptance, _sl, of 0.2 and 1.0 were chosen since most materials

have solar absorptances in this range.

Equilibrium temperatures of the capsule were computed from

equations (30) and (56) as a function of distance of the probe from the

sun, and the results are plotted in figure 8. It can be seen that for

in the range from 0.i to 1.0 and _sl = 0.2 the capsule temperature change

is 26° F for the single-shield configuration and only 2° F for the double-

shield configuration. For _sl = 1.0, the corresponding capsule

temperature changes are only 80 ° F and 7° F, respectively.

For comparison, the equilibrium temperature of the same capsule
without solar radiation shields is

LkCc# + (72)

where ec is again 0.20 and ratios of _sc/ec are set equal to _.0, 1.0,

and 0.i. The results are shown in figure 9. For _sc/¢c equal to 5.0

and for 9 in the range from 0.i to 1.0, the temperature change is

about 1490 ° F. Even for _sc/e c equal to 0.i, the capsule temperature

change is about 360 ° F.

Thus, for this example, the use of solar shields can reduce the

capsule temperature variation by at least one to two orders of magnitude

from that attainable with an unshielded capsule. Moreover these low

temperature variations can be achieved with conventional materials with

no unusual emissive or absorptive properties.

Shield materials will be chosen not only for their absorptive and

emissive properties but also for their ability to withstand the tempera-

tures they will reach in the spatial environment. The shield temperatures

for the solar probe configurations were computed from equations (31), (57),

and (58) and are shown in figure i0 as a function of distance from the sun.

At f = 0.i the maximum shield temperature is about 2620 ° R for the 45°

conical shield with _sl = 1.0; the corresponding shield temperature

with _sl = 0.2 is only 1900 ° R. These temperatures are below the maxi-

mum allowable temperatures of various materials but indicate that care

in selection of the first shield material is necessary. The temperature
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of the second shield (disc) is appreciably lower than that of the first

shield and should present no unusual problems in material selection.

Also note that the temperature of the 4_ ° conical shield is the same

whether the shield is the only shield (as in the single shield configura-

tion) or the first shield of the double-shield configuration. These

results indicate that, for these configurations, the presence of the

capsule with its internal power and/or the intermediate shield has a

negligible effect on the first shield temperature.

It should be noted that the above results are for _s_e of the

shields of !.0 and 5.0 with the highest shield temperatures corresponding

to the highest _s_C. Thus, lower shield temperatures will be obtained

with materials which have lower values of _s_e.

The results of the equilibrium temperatures of a solar probe have

been shown for the specific sizes shown in figure 7. These results are

also applicable to any other size of vehicle which is geometrically

scaled and where the ratio of internal power to capsule surface area is

the same.

The equilibrium temperatures of a solar probe have been presented

for the case where the frontal area of the first shield is the same as

that for the capsule. It is recognized that when the probe approaches

the sun, the first shield frontal area will have to be larger than the

capsule frontal area to shade the capsule completely. For the single-

shield_ conical-capsule configuration shown in figure 7(a), complete

shading of the capsule at 0oi astronomical unit requires the radius of

the first shield to be increased to 1.25_ feet; the frontal area of the

shield would then be increased by 63 percent. As this probe travels in

the range of 0.i _ 9 _ 1.0, the capsule temperature changes are 36°

and ii0 ° F for _sl = 0.2 and 1.0_ respectively. The corresponding

capsule temperature changes for the probe with the smaller shield (see

fig. 8) are 26° and 80 ° F, respectively. Therefore, an increase in

shield frontal area relative to capsule frontal area does increase the

temperature change of the capsule but does not significantly alter the

magnitude of temperature control achieved.

Limitations of Analysis

One basic assumption used throughout the Analysis section of this

report is that the shield and capsule surfaces emit energy in a Lambertian

or cosine distribution (i.e., D(_) = 1). If one wishes to use a different

intensity distribution function, equation (9) must include this function

under the integral (see eq. (7)I and the method of determining

configuration factors given in appendix A must be modified.
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Two additional assumptions made in the analysis deserve consideration

in terms of their influence on the magnitude of temperature control which

can be achieved. These assumptions are (a) that the surfaces reflect

diffusely and (b) that the thermal conductivity of the shields and cap-
sule is infinite. The effects of these assumptions are evaluated by

comparing results of the foregoing analysis to the analyses for the cases

of specular reflections and zero thermal conductivity. These analyses

are presented in appendixes B and C_ respectively_ and the results are

applied to the single-shield_ solar-probe configuration as an example.

Specular reflectance.-Because of the complexity of a specular

reflection analysis_ it was possible to evaluate only the limiting cases

of maximum and minimum energy transferred to the capsule and the corre-

sponding maximum and minimum capsule temperatures. These temperatures

were calculated for the single-shield_ solar-probe configuration (see

fig. 7(a)) as a function of _ and are presented in figure ii along with

the results of the diffuse reflection analysis. At _ = 0.i_ the maximum

capsule temperature is 537 ° R for the specular reflection case as compared

to 526 ° R for the diffuse reflection case. It can also be seen that at a

particular value of Y_ both the maximum and minimum capsule temperatures

for the specular reflection case are higher than that for the diffuse

reflection case. This is a result of the relatively high (_sl)EF F for

specular reflections in the 45 ° conical shield example. (See appendix B. )

Thus, it can be seen that differences in capsule temperature can result

which might be significant between the cases of specular and diffuse

reflect ions.

The results in appendix B indicate that (_s_)_FF and T for the

case of specular reflections vary considerably from those for the case

of diffuse reflections as the conical shield angle is changed. Therefore_

capsule temperatures will also vary between the two cases. The tempera-

ture changes of the conical capsule with a single conical shield of

various semiapex angles were computed for the specular and diffuse

reflection cases as the vehicle traveled from _ of 1.0 to 0.i. The

results are shown in figure 12. It is evident that for _ less than 50°_

the percentage temperature differences between the specular and diffuse

reflection analyses are substantial although the actual temperature

differences are only about i0° F. For 50° _ _ _ 90° , the specular

analysis indicates capsule temperature changes slightly smaller than

those for the diffuse case. For _ _ 90°_ the large differences in

capsule temperature change result from the differences in energy transfer

factor for the diffuse and specular analyses as discussed in appendix B.

Shield thermal conductance.- From the practical viewpoint, the

capsule of a solar probe can be considered to be isothermal whereas a

shield constructed from thin materials may not be able to conduct heat

along the shield and appreciable temperature gradients may exist.

Appendix C contains an analysis for computing the temperature distribu-

tion along a radial line of the cone which has a finite thermal
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conductance and is exposed to solar radiation. In order to determine

the effects of thermal conductance on the capsule temperature of the

single-shield, solar-probe configuration, the analysis was applied to

a 45 ° cone of zero thermal conductance to determine the maximum and

minimum temperatures the conical shield could attain. It was then

assumed that the entire shield was maintained at these extreme tempera-

tures and the corresponding capsule temperatures were computed. The

results are shown in figure 13 along with the infinite thermal conductance

results. At _ = 0.i, it can be seen that with zero conductance the

maximum capsule temperature is approximately 542 ° R and the minimum

is 523 ° R; whereas the infinite conductance results show a capsule tem-

perature of about 526 ° R. Thus, when one considers that these results

are for extreme limits, it appears that the analysis as presented in

this report yields reasonable approximations for capsule temperatures
even when low-conductance shields are used.

CONCLUDING

A

5

3
5

It has been shown that shields can be used to effectively isolate a

capsule from direct solar radiation and, thereby, achieve passive tempera-

ture control of a space vehicle subjected to variable solar energy. The

ambient capsule temperature is then primarily a function of internal

power, surface area, and thermal emittance.

An analysis of the radiative heat-transfer processes for simple

axially symmetric shield-capsule configurations indicates that the

required temperature range of an instrumented capsule may be maintained

with materials that have no unusually high or low absorptance and

emittance characteristics.

Examination of two basic assumptions made in the analysis, (a)

diffusely reflecting surfaces and (b) isothermal surfaces (infinite

thermal conductance), indicates that no serious changes in magnitude of

temperature control will be incurred if the analysis is applied to

vehicles that have specularly reflecting surfaces or thin shields (i.e.,

zero thermal conductance).

The analysis of the radiative heat transfer associated with a capsule

shielded from solar-radiation was applied to configurations with only

conical and flat-disc first shields whose frontal areas were the same as

the frontal area of the capsule. However, the analysis can be applied

to any first-shield configuration for which configuration factors can be

calculated and for which direct solar radiation is incident on only the
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first shield (i.e., the capsule and/or additional shields are in shadow

at all times). Thus_ if a space vehicle requires the use of a parabolic

solar collector, this collector can also be used as a solar radiation

shield for other components of the vehicle.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field_ Calif._ Dec. 27_ 1961
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APPENDIX A

DETERMINATION OF CONFIGURATION FACTORS

FOR CONES AND SPHERES

The calculations for the configuration factors between two cones

and a cone and a sphere were performed with an I.B.M. 704 computer. The

necessary equations for these computations are derived in this appendix.

CONFIGURATION FACTOR BETWEEN TWO CONES

The geometric configuration for two cones is shown in figure 14.

The coordinate positions of points on each cone_ the distance between

the points, and the unit normals to the cone surfaces at the points are

shown as vectors. These vectors may be expressed in component form as

_a = 0a( i cos _a + J sin _a sin 8a + k sin _a cos 8a)

_b = Pb(i cos _b + j sin _b sin 8b + k sin _b cos @b)

_a = -i sin _a + J cos _a sin 8a + k cos _a cos 8a

Tb = i sin _b - J cos _b sin 8b - k cos _b cos 8b

6 = i6

The distance vector between the two points is

= _ + _a - _b (A2)

The angles, _a and _b, between the distance vector and the normals

to the surfaces can be obtained from the scalar product relationships:

cos _a -
_a ° _ _a " _ + _a

lnllsl Isl

(A3)

oos% = Isl
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The elemental areas located at Wa and_ b are given by

dAa = Pa sin _a dOa dea

dAb = Pb sin _b dPb d@b

(A4)

Equations (AI) are substituted into equations (A2) and (A3) and the

resulting equations together with equations (A4) are substituted into the

expression for the configuration factor, equation (9):

Fa_ = _yf_ sln _a" _ [sln Ga cos _b " sin _b cos Ba cos (Sa " 8b)] }

_!5 sin _ - [sin _a cos _ cos(8 a -_)- sin _b cos _a] } sin _a sin _

% d_ d_ d8 a de b

2 + 25(% cos Ba - _ cos _) + pa 2 + %a 2Pa% [cos B a cos _ + sin Ba sin Bb c°S(Oa - Ob)l

(AS)

Because of axial symmetry, one integration can be readily performed and

equation (A_) reduces to

4 sin _a sin _b _oLa fLb f'Su
Fa-b = Aa _o _o [5 sin _a " %(sin _a cos _b - sin _b cos _a cos 8)]

[5 sin _b " ,°a(Sin _a cos _b cos 8 - sin _b cos _a)] PaPG dPa dDb de
[82 + 25(p a cos _a - Db cos _b) + pa 2 + pb 2 - 2paDb(COS _a cos _b + sin _a sin _b cos e)] 2 S

where 8 = (8a - 8b) and La and Lb are the slant heights of the respec-

tive cones. The largest value that eu (Su is the upper limit of 8)

can take is _ radians and this limit will be restricted by the situation

where the distance vector, S, becomes tangent to one of the conical sur-

faces. This condition is equivalent to cos _a = 0 or cos _o = 0 which

gives, from equations (A3), two possible values for 8u:

COS 8U =

COS eu =

<cos _b -
sin _b _b

tan _b <c _>sin _a os _a +

}(A7)

If both of these cosines are greater than unity in absolute value, then

8u = _. If one of the two cosines is less than unity in absolute value,

then that one will determine the value of 8u. If both of the cosines

are within the unity limits, then the equation giving the smallest value

of 8u is the deciding one.
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To facilitate computation the equations can be put into dimensionless

forms:

sin _a

4 sin _b _oI _sin _b_oSU [yZ- ]Fa. b = _ sin _a - (sin _a cos _ - sin _ cos _a cos 0)

v O

Zsin _b " (sin _a cos _b cos 8 - sin _b cos _a) 1 de dY d.X

where

COS e u =

COS e_ =

- 2(cos _a cos _b - sin _a sin _b cos e)j 2q

X Y

_+_

(AS)

tan <c y)sin _b os _b -

sin _a cos _a +

(A9)

Pa
X =.--

La

(A_O)

A
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CONFIGURATION FACTOR BETWEEN A CONE AND A SPHERE

The equations for the configuration factors between a cone and a

sphere are derived in a manner similar to the preceding section with

reference to figure 15.

   YJo *Ufo ]Fa_ b = _ sin _ - (sin _ cos _ + cos _ sin _ cos 8)

L

Ix2+ + _-K cos _ + K cos _ + 2X R (cos 8 cos _ - sin _ sin _ cos e)

(A l)



31

X sin 13 + cos •
_u = tan_ _/L7-- X cos [(8/L) _ - _(_/n) cos _ + X2] Ij2

(A12)

The lower limit, @L_ is determined as the greater of the two values:

_L = 0

or

t_,T _/5 : _ oos

-&
-- COS

R/L

[(_/z) _ - -2x(_/z)cos _ + x_J_-'_

(A13

Equations (AI2) and (A13) have the additional restriction that

tan-fiX sin _/[(5/L) - X cos _]} > 0. The two expressions for eu

of the same form as in the previous case;

are

COS e u =

COS @II ----

tan _ cos @ -
sin _ R/:r.,/

1 cos 13cos _ +_ -_ cossin 13 sin

(A]__)

The method of determining which expression gives the desired value of

is exactly the same as in the case of equation (Ag) for the two cones.

eu

CONFIGURATION FACTOR FROM A CONCA'CE SURFACE TO ITSELF

The configuration factor from

a concave surface to itself may be

readily calculated from simple rela-

tionships between surface areas.

When a plane surface is placed over

the open end of a concave surface,

as shown in the sketch for the spe-

cial case of a cone, the reciprocity Surface

theorem states that

Fa.bka = Fb.aA b (AI5)

Aa _ _
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It is apparent that Fb_ a = i since all radiant energy from surface b

is incident upon surface a and thus equation (AI5) may be written

%
Fa_ b -

Aa
(AI6)

Since all energy leaving surface a strikes either itself again or

surface b, the summation of configuration factors from surface a must

be unity:

Fa_ a + Fa. b = i (AI7)

Thus from equations (AI6) and (AI7) the configuration factor from sur-

face a to itself is determined as

%
Fa-a = i - -- (AIS)

If an obstructing surface is located within the concave surface,

resulting in a partial shielding effect, the preceding analysis is not

valid and the basic configuration factor, equation (9), must be used with

the limits of integration decreased accordingly. In the case of a cone

with a conical obstruction, the configuration factor equation is found by
previous methods to be

cos e )]2

(49)

where Zal and Za2 are distances from the apex of cone a to dAaz

and dAa2 , respectively, on the surface and eu is now determined by

the degree of obstruction by surface b.
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_U = COS COS -
Lsln _a + cos

(A2o)

For no obstructing inner cone the upper limit of integration of e will
be

eu = (A2I)
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APPENDIX B

EFFECTS OF SPECULAR REFLECTIONS

The analytic study of the radiative heat transfer due to specular

reflections for the general class of shapes considered in the text is,

in general, not possible. The problem is one of not being able to express

analytically the process of reflections between two surfaces which "see"

each other. It is possible, however, to evaluate the lower and upper

limits of the energy which can be transferred to these surfaces as a

result of those reflections. For illustration and for comparison with

the diffuse reflection results, these limits will be evaluated for the

case of the single-shleld, conlcal-capsule configuration. It will also

be assumed that the surfaces still emit diffusely, which is a valid

assumption for many engineering materials. (See ref. 8.)

One exception to the above limitations occurs for the parallel solar

radiation incident on the shield. For this case, the effective solar

absorptance, (aSl)EFF , can be evaluated analytically by tracing an inci-

dent ray through the number of reflections which occur for any shield

angle. For a specular surface the incident ray of energy will be reflected

at an angle of reflection equal to the angle of incidence and may or may

not strike the surface again, depending upon the geometry of the surface

and the position of the ray with respect to the apex of the cone. Upon

each succeeding reflection the angle of incidence is seen to increase

by 29 (see sketch) until the ray is reflected out of the cone.



34

After
is

n reflections the fraction of the ray's energy that is absorbed

mmn-1

_sl _. (i- _l) TM

m=o

It can be shown that the initially incident rays near the apex may be

reflected one more time than those near the edge of the cone. Thus, the

effective absorptance of the entire surface must be weighted by the sur-

face areas associated with the local effective absorptances. If An is

the area over which the initially incident rays experience n reflections

and An. I is the area over which the initially incident rays experi-

ence n-1 reflections, the expression for specular effective solar

absorptance for the entire surface may be written

IAm--nTi _ m--n_2 m1

C_s_ (1 - c%1) TM + An. I (i - _sl) (B1)

m--o

An, An_ I and n may be easily determined graphically by ray tracing

for any conical shield of interest. Figure 16 shows the effective solar

absorptance as a function of shield se_iapex angle, _, at various values

of surface absorptance for both specular and diffuse surfaces. The flat

portions of the specular curve occur between 2n_ = 180 ° and 2n_ + _ = 180°;

that is, after n reflections all rays are parallel to incident radiation

and parallel to the surface, respectively. It can be seen that some

rather large differences between (_Sl)EF F for the two cases occur,

particularly when small cone angles and low solar absorptance materials

are combined.

For the example configuration, the limits of the specular reflection

analysis are determined from the consideration of reflected thermal

energy between surfaces. To obtain the lower limit of the energy which

can be transferred when specularly reflecting materials are concerned,

only the energy emitted by one surface that is initially absorbed in the

other surface will be considered (i.e., all emitted energy which is

reflected is assumed to be dissipated to space). The pertinent equations

for this case can be developed from equations (ll), (16), and (19).

The amount of solar energy absorbed by the first shield can again

be written as

E
Qsl --( sl)E x (B2)

where (aSl)EF F for specularly reflecting surfaces is given in figure 16.
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The equations for energies emitted and absorbed for the shield are

Q_ --ciA1_ 4 (_3)

Q*-- _mAm_Tm4 (_4)

Ql-l = c_iFl-leiAloT14 (B5)

Qa-2 = _mFm -2 emAaoTm 4 (B6 )

r 4
Qc-2 = _aFc-mAc ec_Tc = _mFa-cAaec_Tc 4 (B7)

The equations for energies emitted and absorbed for the capsule are

Q*c = ecAc_Tc* (B8)

Q2-c = _cF2 -c eeAmqT2 4 (B9 )

Qi = internal power of the capsule (B10)

Since the shield and capsule are in thermal equilibrium, heat

balances (utilizing equations (Bm) through (B10)) on the shield and

capsule yield (as in the text)

L BaBs - BsB4 ]
and

whe re

_m

B l = (_Sl)EFFAx E (BI3)

(Bm)mi n = elA2a(l - _IFI_I) + eaAaa(l - c_aFa_a) (BI4)

BS = _aFm-c ecA2 _ (B15 )

(B4)rain = _cF2 -c eeA2 ° (BI6)

(B_)rain = ccAcO (B17)

To determine the upper limit of capsule temperature due to specular

reflections, equations (B2) to (BI0) will be modified as necessary to

maximize the total energy which could possibly be transferred to the

capsule. Of these, only equations (BS) and (B9) need to be modified.
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Equation (B5) is modified to maximize the portion of that energy

emitted by the front face of the shield which is reabsorbed. This maxi-

mum occurs when _i = i, which, in effect, implies that this portion of

the emitted energy is subjected to an infinite number of reflections

within the concave shield. Equation (B5) then becomes

QI-I = Fl-meiAl_Tl 4 (B18)

The equation (B9) is modified by assuming that all energy reflected

from the back of the shield (the quantity (I - _a)F2_cAaecqTc 4 +

(i - _a)F2-2e2A2qTa 4) is incident on the capsule and a fraction, _c, of

this incident energy is absorbed. The energy reflected from the capsule

is assumed to be dissipated to space. (This assumption is correct for

the single conical shield, 14.04 ° conical-capsule configuration

for 0° < _ < 127 ° .) Thus, equation (B9) is modified to

A
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Qa-c = ac[F2-c + (i - _a)F2.2]eaA2cT2 4 + _c(l - c_a)F2_cAaec_Tc _

(B19)

A heat balance on the capsule and shield utilizing equations (B2),

(B3), (B4), (B6), (B7), (B8), (BI0), (BI8), and (BI9) yields the usual

equations for the capsule and shield temperatures given by equations (BII)

and (BI2) where

Bl = (_sj.)EFFAxE (B2o)

(Ba)ma x = elA2c(1 - FI.I) + eaAa_(1 - c_aF2_a) (B21)

B 3 = _2Fa_cAagcG (B22)

(B4)ma x = _c[F2-c + (i - _2)Fe.2]eaAaa (B23)

(Bs)max = ecAc_ " _c(1 - c_a)Fa_cA2ecq (B24)

Energy transfer factors, T, were calculated from equation (51) for

the two cases of maximum and minimum energy transfer using equations (B21)

through (B24) and equations (BI4) through (BI7), respectively. The

results are shown in figure 17 as a function of shield semiapex angle

along with the diffuse reflection results. It is seen that the diffuse

case falls within the limits of the specular case and at _ = e = i

all analyses agree. The region of greatest difference occurs at values

of _ greater than 90 ° and at _ = c < i. This difference results

primarily from the limits imposed on Qa-c. In the lower limit, only

the energy emitted by the shield directly to the capsule may be absorbed

(see eq. (B9)). For the upper limit, all reflected energy from the back

of the shield is also included (see eq. (BI9)). In the region of _ <90 ° ,
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it can be seen that the diffuse reflection analysis can be used as a

reasonable approximation of the energy transfer factor for specular

reflecting surfaces. For _ _ 90°_ the large differences between the

diffuse reflection analysis and the limits of the specular reflection

analysis indicate that, in this region, the diffuse reflection analysis

may not be a good approximation for the specular case.

A
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APPENDIX C

EFFECTS OF TEERMAL CONDUCTIVITY ON TEE TEMPERATURE

DISTRIBUTION OF A CONICAL SHIELD

In the foregoing analysis the assumption of an isothermal shield

surface might possibly introduce serious errors into the calculated energy

radiated back to the capsule if either the shield conductivity is low or

the thickness is small. The temperature of the apex of a conical shield

in this case will be somewhat higher than the temperature of the edge as

a result of reflections and the restricted "view" of space that the inside

surface has near the apex.

The temperature gradient along the slant length of a cone isolated

in space subjected to solar radiation parallel to its axis will be deter-

mined as a function of thermal conductivity, thickness, semiapex angle,

and e, and distance from the sun. The method of analysis will be similar

to that given by Nichols in reference 5.

At equilibrium there will be a balance between the net energy emitted

from a given volume element of the cone due to radiation and the heat con-

ducted along the cone into the element. Since the cone temperature is

assumed to be axisymmetric, the net heat conducted into the volume element

(see fig. 18) is given by

Net Q conducted in = - kb de I sin P dT - kb de (I + dl) sin _ dT + d-_dl

= kb de sin p dZ d_(I d_ (C1)

J

The energy emitted from the outside surface of the cone is, of

course, determined from the temperature of the cone element. On the

inside surface, however, the problem is complicated by interactions

between the emitted and absorbed energies. To differentiate, let I(Z)

be the incident radiant flux and H(Z) be the emitted radiant flux,

respectively, for the inner surface of any given element; these items

are exclusive of the initially incident solar flux. The net energy

leaving the volume element will then be

(c2)
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Since the volume element is in thermal equilibrium

--O (c3)

NET Q conducted in =NET Q emitted

kb de sin _ dZ d_<Z d_> = IH(Z)+ ecT4(Z)- I(Z)- C_s <9_ sin B1 de Z sin _ d%

or

kbz d%d---_ d_> = H(Z) + ecT.(Z) . I(Z) ._ s ¢%_ sin _ (C5)

H(Z) is related to I(Z) by the relation

_(_) = e_(_) + (i -_)I(_) (c6)

I(Z) is a result of flux emitted and reflected to the surface element

(this element shall be denoted by the subscript l) from all the other

elements (any other element shall be noted by the subscript 2). The

radiation from any surface element dA m upon dA I is (see fig. 18)

<_ I cos _i cos _2+ _(1 - aS) sin _ xS2
dA 2 (c7)

The purpose of the symbol _ is to allow for two distinct cases;

(1) _ = 0 when the cone's vertex faces the sun and (2) _ = 1 when the

cone's vertex faces away from the sun.

Using methods described in appendix A it is possible to rewrite

cos _i, cos _a, S, and dAm into functions of variables If, Ia, and Qa

where e I is arbitrarily equal to zero. The radiation incident upon dA l

from the entire cone is then

I(Z I) = H(12) + _(1 - O_s) sin _ _[_i 2 + _e 2 - 2%&_2(cos 2 _ + sin 2 _ cos 02)] 2

which may be put in the form

I(l l) = (Za) + {(i -c_ s) sin _ K(ZI, Z2) dZ 2

(c8)

(c9)
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where

cos a _ sin s _ ll_2a _a_ (i - cos ea) e dea
K(Zl,

_o [ll a + _e a " 2111a( c°sa _ + sina _ cos ea)] 2

(ClO)

Thus, there are now three unknowns (H, I, and T) and by solving

simultaneously equations (C9), (C6), and (C9) an equation for T is

obtained :

dT(I:l.)] = 2eoT4(11) . as (_) sinkb _ 11
d_ d_ J

_o_( [ dm(_2)l 2_ _m4(_2)+(i-,=.,) _ d 7,_.

-I-.
-- sin _ K(Zm,L= ) dZ_,

(ell)

For the purpose of the present report only the extreme limits of

thermal conductivity (i.e., k = 0 and k = =) will be studied and compared

with the analysis developed within the report. The resulting equation

will be simplified by the assumption that the solar absorptance is the

same as the thermal absorptance (i.e., as = _).
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INFINITE CONDUCTIVITY

For the case of infinite conductivity T becomes a constant and,

because k _ _,

dl
(Cl2)

even though (dT/dZ) _ 0 where Q is a finite quantity representative of

a rate of heat conduction into the elemental volume.

With the substitution

2 m

e_T4 + (i - _)_ (_e) sin

/ \

. l,r _ e_T4 - _ (_-E--_)sin
1 - \r_/

(C13)
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equation (CII) becomes a Fredholm integral equation

_o L_(_) = i + (i - _) _(%2)K(%1, _a) d_a (Cl4)

If it is assumed that no heat is radiated from the edge of the cone,

then the boundary condition for determining T is that the summation

of Q must be zero over the entire cone and can be written

_Cnen this operation is performed upon equation (C13) the required

equation for the isothermal temperature is obtained:

(c_5)

(c_6)

ZERO CONDUCTIVITY

For the case of k = 0 the substitution

, , sin _ - 2eqT 4

--................. (ClT)
/ \

[2_ . _(1 - 2_)] / E) sin
2 -C_

will reduce equation (Cll) to a Fredholm equation of the previous type:

_(_I): 1 + - 2.,',./o _'

The temperature along the cone is then determined by equation (C17)

@(i- @)(_ sin _I_ 1 " i + _ + (_/2)(i- 2_)_(Zl)]
_(_) = (2 - _)c_ i -

(C19)



42

The calculation of the solutions to equations (C14) and (C18) is,
of course, the samesince the two equations differ only by a constant.
Numerical solutions to be presented were obtained on an IBM 704 computer
using the iterative procedure developed in reference 9.

In figure 19 the results of equation (C16) for k = _ and
equation (C19) for k = 0 are presented for the special case of a 45°
cone whoseapex faces away from the sun. Thesevalues of temperature
are comparedto the isothermal shield temperature obtained from equa-
tion (31) in the Analysis section whenthe shield is alone in space
(i.e., F2-c = Fc-2 = 0). It is seen that the magnitude of the tempera-
ture difference over the length of the cone, for the case of zero
conductivity, becomesless as _ = c becomeslarger. Thus, if a highly
reflective shield material were used, the gradient experienced would be
greater than if a highly absorptive one were used and the chance of
locally exceeding the maximumallowable temperature is greater. The
method of analysis presented in the text of the report comparesvery
favorably to the infinite conductivity analysis presented herein.

An energy transfer factor, T, maybe calculated from equations (31)
and (51) by finding the shield temperature due only to solar irradiation
and equating with the expression for T. The equation thus obtained,

_Ac_T24_2 (C20)

T - BIB5/B 4

was applied to the single-shield, solar-probe configuration and the

results are shown in figure 20. The limiting values of energy transfer

factor for the case of zero conductivity were calculated using the apex

temperature (maximum) and the edge temperature (minimum). The isothermal

analysis developed within the text of the report is seen to fall between

these two limits.

A

5
3

5



43

REFERENCES

i,

.

.

.

.

e

*

.

,

Dugan, Duane W. : A Preliminary Study of the Solar-Probe Mission.

NASA TN D-783, 1961.

Anon.: Materials Problems Associated With the Thermal Control of

Space Vehicles. Materials Advisory Board of National Academy of

Sciences - National Research Council. Rep. MAB-155-M, Oct. 20, 1959.

Acker, R. M., Lipkis, R. P., and Vehrencamp, J. E.: Temperature

Control System for the Atlas Able-4 Lunar Satellite. For oral

presentation at ASME 1960 Summer Annual Meeting and Aviation

Conference, Dallas 7 Texas, June 5-9, 1960.

Cornog, R. A.: Temperature Equilibria in Space Vehicles. Jour. of

the Astronautical Sciences, vol. 5, 1958, pp. 64-67. (Pub. also

as Amer. Astron. Soc. preprint 58-22.)

Nichols, Lester D. : Effect of Shield Position and Absorptivity on

Temperature Distribution of a Body Shielded From Solar Radiation

in Space. NASA TN D-578, 1961.

Hamilton, D. C., and Morgan, W. R.: Radiant-Interchange Configuration

Factors. NACA TN 2836, 1952.

Jakob, Max: Heat Transfer. Vol. If. N° Y., John Wiley and

Sons, Inc., 1957, PP. 1-34.

Jakob, Max: Heat Transfer. Vol. I. N.Y., John Wiley and

Sons, Inc., 1949, pp. 44-52.

Heaslet, Max. A., and Lomax, Harvard: Numerical Predictions of

Radiative Interchange Between Conducting Fins With Mutual

Irradiations. NASA TRR-II6, 1962.



_4

I

O9

O O O O b- _ D-- rq b- O N b- Ch CO OO CO <D

c_

0 r_ _ Od 0 0

• oq .
el

s s o_ _s °s 8o_ s ,Ss

.N
Y _ ° • ° • . °

0 0 =4 0 0 0 0 0 0 0 0

" " " _ _ " " ' T- " _ "

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

,.£,_

xo _o _o o _o o o
_:_ 0.1 0 0 0

N

_o o s_s 8 o o,o o o o o qo o "_o 20 o

o 9o _o S_o o S_o _o o

I

A

9

3

9



45

A

5
3
5

FI
BI

!

r.,O

o_

.r"l

"0
©

0

I

mtl%

H

mr_)

H

_N

H

r_
m

!

M

cC.

. 7
o

02, ._

_:, _ F. _ o

_-_ C_

A_

o _ o o o ,o ,_ o _ o o
ko _-i c_ 0% -4- ME3

__ 0 ? ?, ? I '? '?

co !
OJ _ Cx ,_ Od ¢Q

e

. > o o o o _ o 2!o o _, o o _io,, ,,

o _ o _ _o o _o o o o',.9 _-_ 0 0 0

,, _ ._ o s _ _

_s
0

o 8

I
0

,0

o

Od

_ Lm, N II q II II II

II_ d & d _s d & o 4 d _ o" _s r_

T ? ? ? ? ? I_
0 _, _ o @ o _ -__q _<- o o o o _ o o _ o o o o

a I

-± 0 0

" o' _ _"

_ _, ,/J _ _,
u _ 0 0 O

,_ _i, '7,

0

i

,_o _o _o
_ _-_



46

!

r..Q

,g
F.r..i

, o o o,_ _o _ _ _ _Io _ o _ o
..... 0

CQ

0 0 0 0

s o s o o __o 2o 70 o _o _o o o

©

,-I _ _ _ _ o I o o o ,_ o oo i,.-_,-1 ,_ o o s' o _!o _ o _ o _o,, s' o _o_o_

_, _, ,_ ,_ ,_ I 'I, I
0 0 0 0 0 0 0 0 0 0 0

• --1"
4 _-_ OJ _-_

o o o o o o o o o" d "# _ _ _ _ _,
C_ a r,m 0",, .--t ,-_

_-_ 0 0 0 0 0 0 0 0 0

,,. " d =_ _ o_ ,% _ _

k,

,, _ o o o S_ o '_ o '_ o o o _ o
d',. ,--I r_ d_. CO r_

H

H

0
C)

I

,4

,T ? ? ? ,'F ? ,_
0 0 0 0 0Ooo_S_ o o S S_o _oo S_o _o o S_o _o

" _s o _ o _ _
_0_ CO -,1" ',,.0 ,'-I OJ

,t ? ? _,
e,I e,I

4_ 4' _ 4' _' 4_

A

5
3

5



47

[:1

!

o

.,,-I

(3¢

.r-I

C}

.o=
r._H

rj_

%-

H

r._O

E--t

H

r_
H

r..)

i

H

\

_ _s_ _ _ 8 s 8_ _ 8 _
o c_ o _ o o o o o. o

{12

....._ __ _ _ _ _ _ _s _s 8_ _o_ 808
co........... _ _ _ _

o o r_ cm ,q o o o o o o

,, _ ....... _ oo _ _ _' _._-

,_ ,'f I ? ,_ ? ?

...... _o o o_ o_
rz2 _t .-t b-

o

!Lm o.1 r_s' £ o 8 80 8_ 8os 8os 8_ 8_o. lo..d .o. o
o _ _

,-t 0,1

," ,_ ? ._ _, t

5_ 5_ 5_ 5_ 5.. 5_ 5o



48

!

_g

.,-I

d_

O

B'

HLC_

[DO
._H

O

H

I-I

o

!

4
I-t

..... _ _ o
r_ b-

o o_ _ _ o_
o b- b- 0 w_ 0 0 0

...._OO __
_OO O O O

......... _ _
--I

,- ? ?

-:_ O O O O o
• i • J • L • r,_

r i

H O r,_ r'q O O O O O

_ _O Od

o i

.... _ _ oa0 u_ b- ,__ o H (u o o o o 'Rio

m c,n _

_n, o _ o o o r_

" d ....... % _H

I

....... -_ cOo

o o _ o,_oo O _u_ O

0_o _o _,Io_ _
_ o .

0_o _o _g _g

O

0

o_o _o _o _oo

_o _o _o r_g

,¢ a_ a,,-'

4_ ,_ 4 _



4A

49

!

#
o

o_
#4

-r4

.1-4
0

©

03 0

t'

NO

Z

I-'-t

o

!

I-'-t

N

....... _ _o



5o

I

"H

(3#

I-I

_oH
O

C) II

O
.<

H

I-I

O

I

H
H

° °_ _o °_
_I O t_- °

eel r-I _DI
°I

l

_) _ O O_ O 0J O

i t i

°_ o= _-

LO r-I O (kl
O O

I I I
O --_"_o _o _o _Oo _ o
0J _ 0J

-_" b-

_ i0 i

_ _ o _ _ _o o
_D

_) O [_- _- Io _O

i i i i

0 0

0J _

i0 i i i

0 0 0

_ _ o

o

0_ _ o0 0 0
OJ

no ;I0 I0 0 0 0

_o _o _o _o _o _o
_ _ _ _ °

i

_ _ . _ o00 o _ o _ o
" d o

_0 _0

_o _o _o _o _o _o

- _ ? ?

@ d @ d @ d @ d @ d @ d @ 4

A
5
3
5



_Z

fl

!

0

o_

-,-I
C_

-,-I

#_

0
..,rJ

-_ H U"X

_M

HN
!

I---t
I--t

i i i

o _ _ _ _o _"_o _ _Oo -_.o _o_o _ 0

t_ , , ., I ,_ , ,o o o_ o_ o_ _o _o-_ _ _ _-°_ _ o _ o _ o _ o _ oG.I 0 .-4 0

" d _ _ _ _ __

' ' Io 'o '_ '_
o o o o o okOo_ _o _o _o _o _o _o_ _o

,, _ _ _ _ _ _

I / I0 10 I I I00 0 C 0

_o_,,_ _° _o _o _o _o _o_°_°

•-t _1 Ol o

_0 _ _



52

!

0

°_

_d

0

CO

0

rD

I---t

H

0
rD

!
i

I---t
I--t
I--t

A

5

3

5



53

[:1

I

o
i::q

p:;
o
.el

.H
Gr"

.H
O

c_

..,E4

E-4H

F..q O
r.D

H

o
E-I
r..)

H

r.g
}--4

O
r.D

I

E-I

• °

ti c_ .......

i i i i } i i i i i i

m ,I, G] cg rg _ od
i i i i i i i

Q u qTo _ G,O C/> 0,o G_U

,'_,D ,'J, r_ 5 ,-_ ", ,_ _ _., L', _ " o



54

!

o_

.H

.,-I

"_0

!

o.

1.-I

I--I

I

o _ _ _ _o_ _

II

_ o o o o _ _ _ _ _i_ _o

_ _ o ° _ ___ _ _o _ _

_ cO

_0 0 _ _

o_

011_-

IO

_0

_ _o

_ _ '_ 'o_
,,_,_. _ _ _ •

"1
%

0

_ _o __o _-_o
o_ _ _
04 _



I

o

o_

.H

.H

",0
G_CD

II

I--I

HI

c.D

I

_ _ o _ _ __ _o _o
" o' ....... _ • _ J

_ __ _o_

0a 0 (M 0

r_ d ,g

t_

_ g o _ _ ___ o _ _ '_o

0 0 _P,

H _ co

o

°i

o_o_o _o. _o _ _

i

i i i i I0 -:P i

o o. o . _

@ _P _,_ @ o,_ @ o,_



96

A

5
3
5



57

I0

O9

O8

A

5

3

5

O7

O6

o .05

i

.04

O3

.001 002 .005 .004 .005 .006 .007 .008 009 .010
Ocso/Oi

Figure i.- Capsule temperature change as a function of the ratio Qcso/Qi

for vehicles which travel from the earth to various distances from

the sun.
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